In this procedure, the diameter of the Ag nanoparticles and the A

In this procedure, the diameter of the Ag nanoparticles and the Ag NWs is largely dependent on the type and amount of the ILs present in the reaction mixture. For example, the diameters of the Ag NWs produced from IL solutions of TPA-C and TPA-B mixture, TPA-C, and tetrahexylammonium chloride (THA-C) were 25 to 35 nm, 30 to 50 nm, and 35 to 55 nm, check details respectively, and their dispersions were also relatively wide, as shown in Figure 2II. These results

confirm that there is a correlation between the sizes of the pore, micelle, and ILs employed as the soft template. In order to obtain finer and more uniform nanostructures, TPA-C was mixed with TPA-B in a ratio of 2:1 and subsequently utilized as soft template salts. The Ag nanostructures then formed Ag nanoparticles with a diameter of 30 to 40 nm during the initial reaction step and were subsequently selleck inhibitor converted into well-defined Ag NWs with a narrow and uniform diameter dispersion in the range of 27 to 33 nm and long length of up to 50 μm, as shown in Figure 2. Figure 2I displays an SEM image of the thin and long Ag NWs synthesized

using the TPA-C and TPA-B mixture, while Figure 2II,III displays the distributions of the diameter and length, respectively, of the synthesized wires. Therefore, we determined that the diameter of the wires was OSI-906 manufacturer affected more significantly than the length of the wire when the type and components of the ILs were varied. Then, the IL solutions appear to act as a size-controllable template salt within the liquid phase. In particular, the diameters of the Ag NWs were influenced by the type and components of the ILs, and their sizes could be effectively controlled within a diameter range of 20 to 50 nm according to the components of ILs. In order to identify the growth process, surface plasmon resonance (SPR) was observed at each stage of the synthesis reaction. It has been well documented

that http://www.selleck.co.jp/products/pci-32765.html nanosized metals, especially Ag nanostructures, exhibit a wide range of optical phenomena directly related to SPR, depending on the geometry and size of the metal particles [24, 25]. To demonstrate the specific ways in which the shape of silver wires affects the absorption and scattering of light, UV/vis spectroscopy was employed, analyzing the same materials used for electron microscopy. In general, a SPR spectrum can be fundamentally used to determine the size and shape of the Ag NW by examining the different SPR bands that appear at different frequencies. In this work, the growth process of Ag nanostructures was also studied by observing the SPR spectra. In order to monitor the growth process of the NWs, the SPR spectrum of the samples was measured, and the SPR peaks were determined every 10 min as shown in Figure 3. According to previous reports [26, 27], the characteristic main SPR peaks for Ag NWs with diameter of 40 to 60 nm appear at approximately 350 and 380 nm.

Comments are closed.