We analyze two different physical settings, with the thermal
<

We analyze two different physical settings, with the thermal

gradient orthogonal or parallel to the gravity field. In both settings, we follow the formation of the convective flows from the initial time, when the perturbation is turned on, to the steady state. In the first setting (orthogonal fields) we investigate several different cases, varying the initial stationary ensemble and the perturbing field. We find that the final steady-state convective cell is independent of the specific sequence of perturbation fields, which only affects the transient behavior. In all cases, we find that the convective roll is formed through a sequence of damped oscillations of the local fields (density, temperature, and velocity), superimposed to an overall this website relaxation toward the local steady-state values. Then, we show how D-NEMD can be applied to the Rayleigh-Beacutenard (RB) setting (parallel fields). In these conditions,

the convective flow only establishes above a threshold, without a preferred verse of rotation. We analyze only the response to the ignition of the gravity field in a stationary system under the action of a vertical thermal gradient. Also in this case we characterize the transient response by following the evolution of the density, temperature, and velocity fields until the steady-state RB convective cell is formed. The observed transients are similar to those observed in the case of orthogonal fields. However, the

final steady states are quite different. Finally, we briefly discuss the conditions selleck kinase inhibitor for the general applicability of the D-NEMD method.”
“Objective: In transoral robotic surgery (TORS), if an endoscopic arm equipped with two integrated cameras is placed close to a lesion, a three-dimensionally magnified view of the operative field can be obtained. More important is that the operation can be performed precisely and bimanually using two instrument arms that can move Epigenetics inhibitor freely within a limited working space. We performed TORS to treat several diseases that occur in the parapharyngeal space (PPS) and subsequently analyzed the treatment outcomes to confirm the validity of this procedure.\n\nPatients and Methods: Between February 2009 and February 2012, 11 patients who required surgical treatment for the removal of a parapharyngeal lesion were enrolled in this prospective study. Nine patients received TORS for parapharyngeal tumor resection, and 2 patients with stylohyoid syndrome underwent TORS for resection of an elongated styloid process. The average age of the patients included in this study was 42 years. Five patients were male, and 6 patients were female.\n\nResults: TORS was successfully performed in all 11 patients. The average robotic system docking and operation times were 9.9 minutes (range, 5-24 minutes) and 54.2 minutes (range, 26-150 minutes), respectively. Patients were able to swallow normally the day after the operation.

Comments are closed.