As a versatile fabrication method, it is well suited to yield films with high purity and substrate adhesion [23]. Thus, it is expected that the integration of AgNP-decorated SiNW array and polymer could lead to selleck chemicals llc a simple process and high-performance solar cells. In this work, we report an efficient approach for enhancing the PCE of SiNW/poly(3-hexylthiophene) (P3HT):[6]-phenyl-C61-butyric acid methyl ester (PCBM) hybrid
solar cells by decorating AgNPs on the SiNW surface. In order to evaluate the performance of the scattering effect of AgNPs, we have prepared different diameters of AgNP-decorated SiNW array samples by varying Ag deposition duration, with a Ag-free SiNW array sample as reference. Some hybrid solar cells with the structure of Al/n-type SiNW/AgNP/P3HT:PCBM/poly(3,4-ethylene-dioxythiophene):poly-styrenesulfonate (PEDOT:PSS)/indium tin oxide (ITO) were fabricated. Methods N-type silicon wafers with a thickness of 200 μm and a resistivity of 1 to 10 Ω cm were used. Vertically aligned SiNW arrays were prepared by metal-assisted chemical etching [24, 25]. Silicon pieces were first immersed into an aqueous solution of 5 M hydrofluoric (HF) acid and 0.02 M silver nitrate (AgNO3) for 60 s at room temperature to deposit Ag particles. Then, the Ag particle-coated silicon wafers were moved into an etching solution check details contained in a reactive vessel for 3 min. The
etching solution was made of 5 M HF acid and 0.2 M hydrogen peroxide (H2O2). When the etching processes were over, the silicon strips were dipped into an aqueous solution of nitric acid (HNO3) and then rinsed with deionized water to remove any residual silver. After that, the synthesized SiNW array samples were immersed in a plating solution containing HF acid (5 M) and AgNO3 (0.02 M) Silibinin to deposit AgNPs on SiNWs. The diameter of AgNPs was adjusted by changing deposition times. For comparison, another sample without AgNPs was also prepared. In order to obtain standard spherical particles and decrease defects on the surface,
the AgNP-decorated SiNW array was annealed in N2 at 200°C for 90 min before cell fabrication. Before polymer coating, aluminum (Al) had been attached onto the rear side by thermal evaporation to obtain an ohmic contact. The polymer, P3HT:PCBM (refers to [60]PCBM) with a weight ratio of 1:1, was deposited onto SiNWs by spin coating (2,000 rpm, 1 min), and PEDOT:PSS was deposited onto ITO/glass substrate by spin coating (4,000 rpm, 1 min) in air. Then, PEDOT:PSS/ITO/glass substrate were coated on the P3HT:PCBM and fixed with a clip to complete the hybrid solar cell fabrication. After that, the whole substrates were baked at 110°C in nitrogen for 20 min. A hybrid solar cell without AgNPs decorated was also prepared as a reference device. The active area of all the cells was 16 mm2. The morphology of SiNWs and AgNPs was characterized using a scanning electron microscope (SEM; JSM-7401F, JEOL Ltd., Akishima-shi, Japan).