In this study we examined expression of a subunit mRNA and exon 5

In this study we examined expression of a subunit mRNA and exon 5 splicing in the developing mouse brain. Expression levels of Scn1a, Scn2a

and Scn8a mRNAs increase postnatally, whereas Scn3a mRNA expression levels decrease. Scn1a mRNA contains only exon 5A, due to the absence of exon 5N in the mouse Scn1a gene. At birth, Scn2a is the only sodium channel a subunit mRNA that contains higher or equal amounts of the 5N isoform compared to the 5A isoform in most brain regions. In contrast, the predominant isoform of Scn3a and Scn8a mRNAs in the newborn mouse brain is 5A. 5N/5A ratios for each of the three mRNAs vary across brain regions, with cortex >= hippocampus>thalamus>cerebellum. In all brain regions and for all three a subunits, 5N/5A ratios gradually decrease with age, levelling at a value between 0.1 and 0.2. These findings ROCK inhibitor suggest potential involvement AZD1152 in vivo of common factors in the alternative splicing of exon 5 for all three transcripts, and that expression of these factors varies between brain regions and changes during development. Differences in the strength of exon 5N and/or exon 5A splice sites in Scn2a pre-mRNA as compared to Scn1a and Scn8a may underlie the observed differences in 5N/5A ratios in the three a subunit mRNAs. Crown Copyright (C) 2010 Published by Elsevier Ltd on behalf of IBRO. All rights reserved.”
“Axon degeneration is an early event

in many neurodegenerative disorders. In some, the mechanism is related to injury-induced Wallerian degeneration, a proactive death program that can be strongly delayed by the neuroprotective slow Wallerian degeneration protein (Wld(S)) protein. Thus, it Urocanase is important to understand

the Wallerian degeneration mechanism and how Wld(S) blocks it. Wld(S) location is influenced by binding to valosin-containing protein (VCP), an essential protein for many cellular processes including membrane fusion and endoplasmic reticulum-associated degradation. In mice, the N-terminal 16 amino acids (N16), which mediate VCP binding, are essential for Wld(S) to protect axons, a role which another VCP binding sequence can substitute. In Drosophila, the Wld(S) phenotype is weakened by a similar N-terminal truncation and by knocking down the VCP homologue ter94. Neither null nor floxed VCP mice are viable so it is difficult to confirm the requirement for VCP binding in mammals in vivo. However, the hypothesis can be tested further by introducing a Wld(S) missense mutation, altering its affinity for VCP but minimizing the risk of disturbing other aspects of its structure or function. We introduced the R10A mutation, which weakens VCP binding in vitro, and expressed it in transgenic mice. R10AWld(S) fails to co-immunoprecipitate VCP from mouse brain, and only occasionally and faintly accumulates in nuclear foci for which VCP binding is necessary but not sufficient.

Comments are closed.