It has been argued convincingly that extant photosynthetic bacteria (green sulfur bacteria and acidobacteria) are the precursors for photosystem I (RCI). Similarly, there are strong structural similarities of green filamentous bacteria and purple bacteria (Bryant and Frigaard 2006) that are persuasive as potential progenitors of the extant photosystem II. The elucidation of the crystal structure this website of the RC from purple bacteria (Deisenhofer et al. 1985) made it clear that the core components of the PSII reaction center
(RCII) are very similar. However, the bacterial reaction centers cannot oxidize water despite the similarity of protein structures and likely evolutionary relationship to photosystem II (Sadekar et al. 2006; Allen and Williams 2010 and references therein). There are some major issues that do not support (Green and Gantt 2000) assumptions that the RCs were gained from photosynthetic bacteria: the bacterial chlorophylls have considerably longer wavelength absorptions, evidence is lacking as to how the bacterial reaction centers could have combined, it is not apparent what might have lead to the altered the photosynthetic pigmentation, and especially the negative effects attendant from aerobic photosynthesis. It appears to be more logical MK-8776 cost to assume that extant photosynthetic bacteria adapted specifically to their current
ecological niches, rather than to assume that they have been preserved Avelestat (AZD9668) in their present form since Archean times. Certainly functional similarities occur between reaction center types, but this probably tells us very little at this point about their respective ancestral origins. The predominant photosynthetic pigment absorption ranging from cyanobacteria to trees, is in the visible light spectrum (ca. 400–700 nm). This could reflect functional adaptations that maximized their success, i.e., the development of oxygenic organisms. Chlorophyll a is always the central chlorophyll
in oxygenic plants. Interestingly, many other pigment types fill an optical gap (ca. 445–670 nm) (Jeffrey et al. 1997) where Chl a absorption is minimal. Such accessory pigments are synthesized by a variety of divergent biosynthetic pathways. Major accessory pigments include Chl b, Chl c, the phycobiliproteins, and the carotenoid-based fucoxanthins and peridinin. Rarely do extant oxygenic organisms possess chlorophylls with a longer wavelength range to ca. 720 nm, e.g., Chl d (Allakhverdiev et al. 2010) and even Chl f (Chen et al. 2010). Are these rare chlorophylls to be regarded as evolutionary remnants, as evolutionary transitions, or as interesting variants that do not represent direct clues to or from a major evolutionary path? The latter option seems the most rational at this time. The primary distinction and most unifying feature in the evolutionary development of oxygenic photosynthesis is also the most confounding puzzle.