From an engineering perspective, practical

From an engineering perspective, practical Ivacaftor ic50 thermoelectric device requires a significant

volume of material. To realize this objective, nanostructuring using ball milling followed by hot pressing was shown to have a significant reduction in the thermal conductivity of thermoelectric materials especially silicon [7–10]. Similarly, mechanical deformation using high pressure was adopted to improve the Seeback coefficient of Bi2Te3 and PbTe [11, 12]. Valiev et al. [13] demonstrated a novel technique using high-pressure torsion (HPT) to create a high density of lattice defects such as grain boundaries and dislocations on nanometer length scales [13]. Ikoma et al. [14, 15], using HPT processing, reported detailed structural characterization of bulk crystalline silicon by X-ray diffraction spectroscopy, Raman spectroscopy, photoluminescence find more spectroscopy, and transmission electron microscopy and discussed the mechanism behind the nanograin formation in detail [14, 15]. Intrinsic high thermal conductivity of single crystalline silicon limits its application in thermoelectric systems. In this work, we show that bulk single crystalline silicon, when subjected to intense plastic strain through HPT processing, shows a dramatic reduction in room temperature thermal conductivity from its intrinsic single crystal value of 142 W m−1 K−1

to a low thermal conductivity of approximately 7.6 W m−1 K−1. The experimental thermal conductivity results are comparable to nanostructured silicon prepared by ball milling and spark plasma sintering approach reported in the literature [7–10]. Considering the widely adopted method of ball milling followed by plasma sintering in thermoelectric literature to form bulk samples, the current approach could be a promising alternative for such applications. Methods Sample preparation Montelukast Sodium Single crystalline Si (100) wafers of size 5 × 5 mm2 and thickness 640 μm were subjected to HPT processing. Details of the HPT processing in Si was described elsewhere14. Briefly, the HPT facility comprises of upper and lower anvils made of tungsten carbide with flat bottomed spherical depressions to

mount the test sample. During experiments, the test samples were placed in the lower anvil and the pressure was applied on the upper anvil. The HPT facility was operated at a pressure of 24 GPa (loading time approximately 7 s and unloading time approximately 2 s) and at room temperature. Torsional straining is achieved by rotating the lower anvil with respect to the upper anvil at a rotation speed of 1 rpm. HPT-processed samples with 0, 10, and 20 torsion cycles were prepared using this process. The samples were further annealed at 873 K for 2 h (0 and 10 torsion cycles) and 3 h (20 torsion cycles) in nitrogen atmosphere. We performed Raman and X-ray diffraction characterization independently and found that the experimental results were similar to previous literature results [14, 15].

In the Zn1−x Cu x O nanostructures, the presence of the E2(high)

In the Zn1−x Cu x O nanostructures, the presence of the E2(high) mode confirms that they all have a typical hexagonal wurtzite structure, which is consistent with the above HRTEM and XRD observations. When the Cu content is 7%, the E2(high) and E1(LO) modes become broader and shift to lower frequency, as compared with the undoped counterpart. This may be due to the decrease in the binding energies of Zn-O bonds as a result of the Cu

doping, indicating that the long-range order of the ZnO crystal is destroyed selleck kinase inhibitor by Cu dopants [32]. Figure 5 Raman spectra. Raman spectra of undoped ZnO and Zn1−x Cu x O samples with the Cu contents of 7%, 18%, and 33%. On the other hand, three additional modes at around 290, 340, and 628 cm−1 can be observed. They are attributed to the Ag, B1 g, and B2 g modes of CuO due to the vibrations of oxygen atoms, respectively [33, 34]. From Figure 5, it is obvious that the intensity of the CuO peaks enhanced while that of ZnO

peaks decreases with the Cu concentration increases up to 33%. Such behavior is caused by the competition of Zn and Cu during the oxidization process. In the sample with the highest Cu content of 33%, the formation of CuO is dominant, in spite of the fact that the lower melting point and higher vapor pressure of Zn than those of Cu under the same conditions [35]. The formation of CuO is significant to induce the usual ZnO hexagonal structures changing into four-folded cross-like structures, in good agreement with the growth Epacadostat mechanism we have proposed above. In order to investigate the effects of the different Cu concentrations on the optical characteristics in the yielded samples, we have carried out PL spectroscopy

as shown in Figure 6. We can see that all the samples show two emission peaks: a sharp one appearing at approximately 377 nm in the ultraviolet (UV) region and another broad one in the visible region. The former is ascribed to the near-band-edge (NBE) exciton recombination, while the latter is quite complicated due to the native and dopant-induced defects C-X-C chemokine receptor type 7 (CXCR-7) in ZnO. The intensive PL emission peak at 495 nm is suggested to be mainly due to the presence of various point defects, which can easily form recombination centers. The peak corresponding to 510 nm is usually generated by the recombination of electrons in singly ionized oxygen vacancies with photogenerated holes in the valence band [36, 37]. Apart from the strong peaks at 495 and 510 nm, the visible band consists of at least four sub-peaks at wavelengths of 530, 552, 575, and 604 nm, resulting from the local levels in the bandgap of ZnO. The green shoulders at 530 and 552 nm are attributed to the antisite oxygen and interstitial oxygen, respectively [35]. The peak at 604 nm is possibly caused by the univalent vacancies of zinc in ZnO. The origin of another peak at 575 nm has been rarely mentioned and is still unclear.

Methods Animals All procedures were approved by the responsible e

Methods Animals All procedures were approved by the responsible ethical committees according to Dutch legislation. For this study, liver tissue was obtained from seven dogs. In addition two archival specimens were used as positive controls for staining B-Raf mutation during histologic examinations. Surplus animals from orthopedic research revealed, histologically confirmed, healthy livers. These dogs were euthanized immediately prior to extirpation of the liver, using an overdose of pentobarbital via the cephalic vein. Liver

biopsies Liver biopsies were taken according to the Menghini technique described by Rothuizen [20] and by use of a 16-gauge biopsy needle using an automatic biopsy device (Pro-Mag Ultra Automatic Biopsy Instrument, PBN Medicals, Stenløse, Denmark). Liver biopsies retrieved by use of the Menghini technique were kept in physiologic saline solution (0.9% NaCl in sterile water, group Menghini NaCl) or sterile water (group Menghini water) until transfer into according preservatives. Liver biopsies retrieved with the True-cut gun were kept at room air until transfer

into the different storage media. After fixed time periods the material was further processed with either one of the following four methods: snap freezing and subsequent storage at minus 70°C, transfer into a sterile Opaganib ic50 1.5 ml vial containing 1 ml of RNAlater (Applied Biosystems, Nieuwerkerk a/d lJssel, the Netherlands), Boonfix (Finetec, Tokyo, Japan) or B-RLT (QIAGEN, Venlo, the Netherlands). Biopsies in these vials were kept at 4°C for 2 hrs, and later transferred to minus 20°C and minus 70°C freezing for long-term storage (2 weeks to 18 months). Additional biopsies retrieved exclusively for histologic examinations were retrieved by the Menghini-NaCl method, and immediately deposited at room temperature (RT) per three in 6 ml containers filled with 10% neutral buffered formalin. Wedge biopsies (1 × 1 × 1 cm) were put in a larger container, containing at least 10 cm3 of formalin. Isolation of RNA, reversed transcriptase and quantitative RT-PCR RNA isolations with the RNAeasy kit (QIAGEN) or Trizol reagent (Invitrogen,

Leek, the Netherlands) were performed according to the manufactures instructions. RNA yields were quantified spectrophotometrically using the Nanodrop ND-1000 (Isogen Life Science, IJsselstein, the Netherlands) device and set to a 0.1 Florfenicol μg/μl concentration. One microgram of each total RNA sample was used to synthesize cDNA with an MMLV-derived reverse transcriptase according to manufacturer’s protocol (iScript cDNA synthesis kit, Bio-rad, Veenendaal, the Netherlands). Details were described previously [19]. RNA quality was measured in two independent ways: By means of the A260/A280 ratio, which estimates the amount of protein contamination, and by means of the Agilent 2100 Bioanalyzer (Agilent Technologies, Amstelveen, the Netherlands), which displays RNA Integrity Number (RIN-values) indicating the percentage of intact 18S and 28S rRNA.

The mRNA levels of GCS and MDR1 were measured with RT-PCR The fo

The mRNA levels of GCS and MDR1 were measured with RT-PCR. The following specific oligonucleotide primers were designed respectively for mdr1 (mdr1-F:5′- TGGTGGTGGGAACTT TGG-3′ and mdr1-R:5′-CCTATCTCCTGTCGCATT-3′),

GCS (GCS-F:5′-CACCCGATTACACCTCAA – 3′ and GCS-R: 5′-CCGTGAACC AAGCCTACT-3′), β-actin (β-actin-F:5′-TGACGTGGACATC CGCAAAG – 3′, and β-actin-R: 5′-CTGGAA GGTGGACAGCGAGG – 3′). PCR cycles were adjusted to have linear amplification for all the targets. Each RT-PCR reaction was repeated three times. The semiquantitative analysis of GCS mRNA and MDR1 mRNA levels Crenolanib was measured with Syngene Gel Imaging System and analysis software (Syngene Company). Western blotting analysis of P-gp, Caspase-3 and GCS protein HCT-8, HCT-8/VCR, HCT-8/VCR-sh-mock and HCT-8/VCR-sh-GCS were harvested using RIPA cell lysis buffer (Biotech Corporation). The protein concentrations were measured by using a bicinchoninic acid (BCA) protein assay kit. Equal aliquots of total detergent-soluble proteins (50 μg) were resolved to 5-10% gradient SDS-PAGE. The transferred PVDF membrane were blocked with 5% fat-free milk in TBST at room temperature for 1 h and then incubated with primary antibodies (anti-P-gp antibody, C-19,

anti-GCS antibody, anti-caspase-3 or anti-β-actin antibody; 1:1000 dilution) at 4°C overnight. The protein was detected by using horseradish peroxidase

(HRP) and enzyme-linked chemiluminescence (ECL) plus substrate (GE Healthcare, Piscataway, NJ) Anti-human P-gp antibody (C-19) Gefitinib price and GCS antibody (H-300) and anti-caspase-3 antibody were purchased from Santa Cruz Corporation. The protein levels of P-gp, Caspase-3 and GCS were represented by the ratios of optical densities in Sinomenine their bands normalized against β-actin. Cytotoxicity assay In 96 well plates, cells were seeded in 100 μl PRMI-1640 medium supplemented with 10% FBS at 5 × 103 cells/well. Then chemotherapeutic agents were added in normal growth medium supplemented with FBS. After 48 h incubation, 10 μl Cell Counting Kit-8 (CCK-8) was added and culture was continued for 1 h in humidified atmosphere containing 5% CO2. Absorbances at 450 nm were measured by Microplate Reader (Bio-Tech Company). The relative drug resistance folds were analyzed by compared with IC50. Flow cytometry To measure the apoptosis rate of the cells, we chose the AnnexinV-FITC Apoptosis Detection Kit. The cells were washed 2 times by 4°CPBS, and diluted with 400 μl AnnexinV binding liquid, then added 5 μl Annexin V-FITC at 4°C for 15 min without light, and then added 10 μl PI at 4°C for 5 min without light. The cells were measure with flow cytometry within 1 h. Statistical analysis All of the data were presented as the mean ± SD, and analyzed with one-way ANOVA by SPSS16.0 software package.

Resistance training protocol Participants engaged

Resistance training protocol Participants engaged Metformin mouse in a 4-day per week resistance-training program split into two upper and two lower extremity workouts per week for a total of seven weeks. The upper body resistance-training program consisted of nine exercises

(bench press, lat pull, shoulder press, seated rows, shoulder shrugs, chest flies, biceps curl, triceps press down, and abdominal curls) twice per week and a seven exercise lower extremity program (leg press or squat, back extension, step ups, leg curls, leg extension, heel raises, and abdominal crunches) performed twice per week. We have previously shown this program to be effective at promoting significant gains in muscle strength and mass [18]. Participants performed

3 sets of 8–10 repetitions with 70–80% 1-RM. Rest periods Protein Tyrosine Kinase inhibitor between exercises lasted no longer than three minutes and rest between sets lasted no longer than two minutes. Training sessions were not supervised, but were documented in training logs, and signed off to verify compliance and to monitor progress. Muscle biopsies and venous blood sampling Based on our previously-established guidelines [18], at each of the four testing sessions at days 0, 6, 27, and 48 percutaneous muscle biopsies (50–70 mg) were obtained using a Bergstrom (5 mm) needle. Muscle samples were obtained from the middle portion of the vastus lateralis muscle of the dominant leg at the midpoint between the patella and the greater trochanter of the femur, at a depth between one and two cm. For the remaining three biopsies, attempts were made to extract tissue from approximately the same location as the initial biopsy by using the pre-biopsy scar, depth markings on the needle, and a successive incision that was made approximately

0.5 cm to the former from medial to lateral. After removal, the muscle specimens were immediately frozen PLEKHM2 in liquid nitrogen and then stored at -80°C for later analysis. At each of the four testing sessions, venous blood samples were obtained from the antecubital vein using a standard Vacutainer apparatus. Once collected, the samples were centrifuged for 15 minutes. The serum was removed and frozen at -80°C for later analysis. An 8-hour fast prior to blood donation was required for the participants before each of the four testing sessions. Muscle and serum creatine analysis Muscle tissue samples were analyzed spectrophotometrically for total creatine by the diacetyl/α-napthtol reaction [19]. Using similar methods, serum samples were measured in duplicate for creatine concentration. Serum samples were immediately ready for creatine analysis, whereas muscle tissue had to first be prepared. For serum creatine analysis, duplicates for all samples yielded a coefficient of variation of 5.4%.

It is now well known that the kidney contains all of the elements

It is now well known that the kidney contains all of the elements of the RAS, and locally produced Ang II contributes to not only kidney ontogeny but also to the regulation of BP and progression of chronic kidney disease (CKD) [6–8]. The objective of this review

is to explain the role of the renal tissue RAS, with particular focus on the role of the glomerular RAS in disease progression based on recent data. The presence and role of the tubular RAS in the kidney have been extensively reviewed by Kobori et al. [7] and will not be discussed here. Recent advances in RAS biology Traditionally, the circulating RAS is known to regulate BP, sodium balance and fluid homeostasis (Fig. 1). Briefly, renin (protease) secreted from the granular cells of the juxtaglomerular apparatus reacts with angiotensinogen (AGT) produced by the liver to release Ang I (1–10), which is further cleaved by a dipeptidyl carboxypeptidase, angiotensin-converting Dactolisib solubility dmso enzyme (ACE), released from capillary endothelial cells of the lung, to convert Ang I to Ang II (1–8). Ang II is considered the major physiologically

active component of RAS. The biological actions of Ang II are transmitted by two seven-transmembrane G-protein-coupled receptors—AT1R and AT2R. Most of the physiological effects of Ang II are conveyed by AT1R. AT1R activation induces an increase in blood volume and BP by stimulating vasoconstriction, CP868596 along with adrenal aldosterone secretion, renal sodium reabsorption and sympathetic neurotransmission. This classical view of the RAS has been significantly expanded by more recent findings that increased the complexity of the system [9, 10]. Ang II is now considered to play a role in cell proliferation, hypertrophy, superoxide production, inflammation and extracellular matrix (ECM) production through the induction of cytokines, chemokines and growth factors [11]. Furthermore, accumulating evidence

indicates that other biologically active peptides [Ang (1–7), Ang III and Ang IV] besides Ang II are generated via the activity of ACE2, a homolog of ACE, and several peptidases such as neprilysin (NEP), aminopeptidase A (AP-A) and AP-N. ACE2 is a monocarboxypeptidase Tau-protein kinase that catalyzes the conversion of Ang I to ng (1–9) or the conversion of Ang II to Ang (1–7). The action of Ang (2–10) derived from Ang I via AP-A is still not definitively characterized, but has been implicated in the modulation of vasopressor responses in hypertensive rats [12]. Additionally, new receptors such as Mas receptor, AT4R and prorenin/renin receptor (PRR) have been identified [13–15]. The binding of prorenin to PRR leads to the activation of prorenin to active renin by displacement of the prosegment. Interestingly, stimulation of the PRR activates intracellular signaling, thus upregulating the expression of profibrotic proteins [16].

An association between CYP1A1 polymorphisms and lung cancer was f

An association between CYP1A1 polymorphisms and lung cancer was first reported by Kawajiri and co-workers in 1990 among an Asian study population (Febs Lett 1990;263:131-133)[9], after which many studies analyzed the influence of CYP1A1 polymorphisms on lung cancer risk; no clear consensus, however, Anti-infection Compound Library molecular weight was reached. Moreover, 3 meta-analyses have reported conflicting results. Houlston RS [10] found no statistically significant association between

the MspI polymorphism and lung cancer risk in 2000, in a meta-analysis performed by Le Marchand L et al. [11] included only 11 studies, the exon 7 polymorphism did not correlate with lung cancer risk. Shi × [12], however, noted a greater risk of lung cancer for CYP1A1 MspI and exon 7 polymorphism carriers in a meta-analysis that included only Chinese population. A single study might not be powered sufficiently to detect a small effect of the polymorphisms on lung cancer, particularly in relatively small sample sizes. Various types of study populations and study designs might also have contributed to these disparate findings. To clarify the effect of the CYP1A1 polymorphism

on the risk for lung cancer, selleck screening library we performed an updated meta-analysis of all eligible case-control studies to date and conducted the subgroup analysis by stratification according to the ethnicity source, histological types of lung caner, gender and smoking status of case and control population. 2. Materials and methods 2.1 Publication search We searched for studies in the PubMed, Embase, Web of Science, and CNKI (China National Knowledge Infrastructure) electronic databases to include in this meta-analysis, using the terms “”CYP1A1,”" “”Cytochrome P450 1A1,”" “”polymorphism,”" and “”lung cancer.”" An upper date limit of June, 2010 was applied; no lower date limit was used. The search was performed without any restrictions on language and was focused on studies that had been conducted in humans. We also

reviewed the Cochrane Library for relevant articles. Concurrently, Carbohydrate the reference lists of reviews and retrieved articles were searched manually. When the same patient population appeared in several publications, only the most recent or complete study was included in this meta-analysis. 2.2 Inclusion criteria For inclusion, the studies must have met the following criteria: they (1) evaluated CYP1A1 gene polymorphisms and lung cancer risk; (2) were case-control studies or nested-case control study; (3) supplied the number of individual genotypes for the CYP1A1 MspI and exon 7 polymorphisms in lung cancer cases and controls, respectively; and (4) demonstrated that the distribution of genotypes among controls were in Hardy-Weinberg equilibrium. 2.3 Data extraction Information was extracted carefully from all eligible publications independently by 2 authors, based on the inclusion criteria above.

87% in exposure to cytotoxic drugs, 33 93% in pH sensing, and 30

87% in exposure to cytotoxic drugs, 33.93% in pH sensing, and 30.81% in carbon source responses) were not classified by the MIPS annotation

(Fig. 1). Growth of T. rubrum in a keratinocyte serum-free medium (Library 1) revealed high throughput screening compounds 207 novel genes (Table 1; Additional file 2) in comparison to the T. rubrum sequences deposited in public databases, which include an EST collection that was previously generated during the growth of T. rubrum in Sabouraud liquid medium [14]. This suggests that the expression of these 207 novel genes is nutrient-dependent. Functional grouping of these genes, which were identified on the basis of their ESTs, revealed their possible involvement in various cellular processes such as basic metabolism, conidial germination, and hyphal growth, among other functions (see Additional file 2). Figure 1 T. rubrum unigenes functional categorization, according to MIPS. The unigenes were grouped in four different stimuli. Challenging

T. rubrum with cytotoxic drugs Numerous signal-transduction pathways are used Y-27632 solubility dmso by fungi to sense and overcome the toxic effects of antifungal drugs [17]. Our aim in this study was to identify metabolic events that occur during the initial stages of drug exposure; therefore, we created an EST collection by challenging the dermatophyte T. rubrum with cytotoxic drugs, including most of the antifungals used in medical practice. These drugs, which belong to the azole and allylamine/thiocarbamate classes, were fluconazole (FLC), imazalil (IMZ), itraconazole (ITRA), ketoconazole (KTC), tioconazole

oxyclozanide (TIO), and terbinafine (TRB). All of these compounds inhibit the biosynthesis of ergosterol. T. rubrum was also challenged with the following cytotoxic drugs: amphotericin B (AMB), griseofulvin (GRS), benomyl (BEN), undecanoic acid (UDA), cycloheximide (CHX), chloramphenicol (CAP), acriflavin (ACR), ethidium bromide (EB), and 4-nitroquinoline 1-oxide (4NQO) [18–20]. Approximately 300 unigenes were identified in these experiments and only 70 of these were exclusive to drug challenge (Additional file 2). Drug exposure induced the transcription of several multidrug resistance genes, as previously reported in studies in which T. rubrum was exposed to sub-inhibitory levels of KTC, AMB, or other drugs [21, 22]. One of these genes [GenBank: FE526598] encodes a putative multidrug resistance protein (MDR) that accumulates in the mycelia when the organism is independently exposed to various cytotoxic agents. Overexpression of this gene has been previously reported in the myceliaof T. rubrum exposed to the antimycotic agents ACR, GRS, ITRA, or FLC [23]. Disruption of this gene increased the susceptibility of the mutant strain to TRB in comparison with the control, suggesting that this transporter modulates T. rubrum drug susceptibility [23]. Some of the ESTs that were overexpressed in the mycelia of T.

Effect of EGFR knockdown on LRIG1-induced cell proliferation and

Effect of EGFR knockdown on LRIG1-induced cell proliferation and signal pathway regulation To determine whether EGFR expression is critical for the effect of LRIG1 on bladder cancer cells in vitro, we next used specific genetic inhibition of EGFR to assess the consequences of its inhibition on LRIG1 mediated cell proliferation and signal pathway regulation. First, we confirmed that the EGFR siRNA effectively reduced the EGFR

protein level in T24 and 5637 cells (Figure 6A). Then we found EGFR knockdown significantly decreased the effect of LRIG1 cDNA on cell proliferation compared with control-siRNA-transfected cells (Figure 6B). LY2157299 in vivo And EGFR siRNA significantly weakened the effect of LRIG1 cDNA on the EGFR signaling pathway regulation in both cell lines compared with cells transfected with control siRNA

(Figure 6C). Figure 6 Effect of EGFR knockdown on LRIG1-induced cell proliferation and signal pathway regulation. A: Genetic suppression of EGFR by EGFR-siRNA transfection. B: Proliferation of cells treated with LRIG1 cDNA after check details transfection with EGFR siRNA or control siRNA. *P < 0.05 vs cells transfected with control siRNA. C: Effects of silencing EGFR on the LRIG1-induced regulation of the expression of AKT, MAPK, and their phosphorylated forms. Discussion Kekkon proteins negatively regulate the epidermal growth factor receptor (EGFR) during oogenesis in Drosophila. Their structural relative in mammals, LRIG1, is a transmembrane protein, could restrict growth factor signaling by enhancing receptor ubiquitylation Glutamate dehydrogenase and degradation [13]. The feasibility and efficacy of

the inhibitory effects of LRIG1 on tumor through inhibiting EGFR signaling activity have been studied in renal cancer, glioma, squamous cell carcinoma of skin, colorectal cancer and prostate cancer [19–23]. In this study, we attempted to evaluate the inhibitory effects of LRIG1 on aggressive bladder cancer cells. EGFR is a well-studied, versatile signal transducer that is overexpressed in many types of tumour cells, including lung, colon and prostatic carcinoma, and up-regulation of EGFR is associated with poor clinical prognosis [24, 25]. EGFR is a 170 kDa tyrosine kinase receptor consisting of an extracellular ligand-binding domain, a transmembrane lipophilic domain, and an intracellular tyrosine kinase domain and the C-terminus region with multiple tyrosine residues [26]. EGFR mediates signals that stimulate proliferation, migration, and metastasis in many tumour types [25, 27], and its signal transduction is regulated by stimulatory and inhibitory inputs.

Phylogenetic analysis To gain a better taxonomic understanding of

Phylogenetic analysis To gain a better taxonomic understanding of the Serratia G3 isolate a 16S rDNA-based phylogenetic tree was compiled using the neighbour-joining method of MEGA 4. The 16S rRNA gene sequence from the G3 isolate, we recently published elsewhere [23] was analysed together with those from other members of the genus Serratia, including the S. plymuthica DSM 4540 type strain as a reference and the related strains BGB324 manufacturer S. proteamaculans DSM 4543, S. ficaria DSM 4569, S. entomophila DSM 12358, S. odorifera DSM 4582, S. marcescens DSM 30121, as well as S. plymuthica RVH1 from a raw vegetable

processing line and an endophytic strain JA05 isolated from ginseng plants. In addition, Escherichia coli ATCC 25922 as an outgroup. These 16S rRNA sequences were obtained from GenBank. The tree topology was tested by bootstrap analysis LY294002 chemical structure of 1000 samplings. Cloning

and sequencing of two pairs of LuxIR homologues from S. plymuthica strain G3 Production of AHL signal molecules in strain G3 was detected using a T-streak assay with C. violaceum CV026 on plates. The following two pairs of primers for the cloning the splIR and spsRI loci were designed to the conserved regions of the corresponding genes in the genus Serratia using the ClustalW multiple sequence alignment program: SplIR-F: 5′-TTTGTAGAATACCGGCAAGCTGTT -3′ and SplIR-R: 5′-CAGATCGTCACGGAGCCTGT-3′; SpsRI-F:5′-GAGAGGGTTCAGTGTCAAAT-3′ and SpsRI-R: 5′-CCATGGAAGATGTAGAAATG-3′. These genes were amplified using G3 genomic DNA as a template by PCR and cloned into pMD-19T (Takara, Dalian, China). The clones expressed the AHL synthases SplI or SpsI in E. coli

DH5α were selected by T-streak with C. violaceum CV026 for further identification of AHL profiles, and confirmed by PCR and sequencing (Sangon Co. Ltd., Shanghai, China). A neighbour-joining tree of LuxI family members was produced using the DNA ligase MEGA 4. Amino acid sequences of SplI and SpsI from the G3 isolate were aligned and analysed together with LuxI homologs from other eight members of Serratia and EsaI from Pantoea stewartii DC283. TraI of Agrobacterium vitis S4 was tested as outgroup. These amino acid sequences of LuxI homologs were obtained from GenBank. Confidence in neighbour-joining tree was determined by analysing 1000 bootstrap replicates. AHL degradation by heterologous expression of the AiiA acyl-homoserine lactonase A quorum-quenching approach was used to identify AHL-regulated biocontrol-related phenotypes in the endophytic strain G3. E. coli S17-1/pME6863 carrying the AHL-lactonase aiiA from the Bacillus sp. strain A24 under the control of the constitutive lac promotor [21] was used to mobilise aiiA into G3 by conjugation to obtain G3/pME6863-aiiA. G3 containing pME6000 was used as a control.