CrossRef 5 Shawkey MD, Kosciuch KL, Liu M, Rohwer FC, Loos ER, W

CrossRef 5. Shawkey MD, Kosciuch KL, Liu M, Rohwer FC, Loos ER, Wang JM, Beissinger SR: Do birds differentially distribute antimicrobial proteins within clutches

of eggs? Behavioral Ecology 2008,19(4):920–927.CrossRef 6. Schafer A, Drewes W, Schwagele F: Effect of storage temperature and time on egg white protein. Nahrung-Food 1999,43(2):86–89.CrossRef 7. van Dijk A, Veldhuizen EJA, Haagsman HP: Avian C59 wnt cell line defensins. Vet Immunol Immunopathol 2008,124(1–2):1–18.PubMedCrossRef 8. Sellier N, Vidal ML, Baron F, Michel J, Gautron J, Protais M, Beaumont C, Gautier M, Nys Y: Estimations of repeatability and heritability of egg albumen antimicrobial activity and of lysozyme and ovotransferrin concentrations. Br Poult Sci 2007, 48:559–566.PubMedCrossRef 9. Swierczewska E, Skiba T, Sokolowska A, Noworyta-Glowacka J, Kopec W, Koeniowska AZD1480 molecular weight M, Bobak L: Egg white biologically active proteins activity in relation to laying hen’s age. Golden Tulip Parkhotel Doorwerth, Doorwerth, Netherlands: Proceedings of the XVII European Symposium on the Quality of Poultry Meat and XI European Symposium on the Quality of Eggs and Egg Products; 2005:69–72. 10. Swierczewska E, Niemiec J, Noworyta-Glowacka J: A note on the effect of immunostimulation of laying hens on the lysozyme activity in egg white. Anim Sci Pap Rep 2003,21(1):63–68. 11. Hamal KR, Burgess SC, Pevzner IY, Erf GF: Maternal antibody

transfer from dams to their egg yolks, egg whites, and chicks in meat lines of chickens. Poult Sci 2006,85(8):1364–1372.PubMed 12. De Reu K, Grijspeerdt K, Heyndrickx M, Zoons J, De Baere K, Uyttendaele Cyclooxygenase (COX) M, Debevere J, Herman L: Bacterial eggshell contamination in conventional cages, furnished cages and aviary housing systems for laying

hens. Br Poult Sci 2005,46(2):149–155.PubMedCrossRef 13. Vucemilo M, Vinkovic B, Matkovic K, Stokovic I, Jaksic S, Radovic S, Granic K, Stubican D: The influence of housing systems on the air quality and bacterial eggshell contamination of table eggs. Czech J Anim Sci 2010,55(6):243–249. 14. De Reu K, Messens W, Heyndrickx M, Rodenburg TB, Uyttendaele M, Herman L: Bacterial contamination of table eggs and the influence of housing systems. World Poultry Sci J 2008,64(1):5–19.CrossRef 15. Protais J, Queguiner S, Boscher E, Piquet JC, Nagard B, Salvat G: Effect of housing systems on the bacterial flora of egg shells. Br Poult Sci 2003,44(5):788–790.PubMedCrossRef 16. Round JL, Mazmanian SK: Inducible Foxp(3+) regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci USA 2010,107(27):12204–12209.PubMedCrossRef 17. Macpherson AJ, Slack E, Go6983 Geuking MB, McCoy KD: The mucosal firewalls against commensal intestinal microbes. Semin Immunopathol 2009,31(2):145–149.PubMedCrossRef 18. Li-Chan E, Nakai S: Biochemical basis for the properties of egg white. Critical reviews in poultry biology 1989,2(1):21–59. 19.

metallireducens genome (Additional files 7,8,9: Figures S3, S4 an

metallireducens genome (Additional files 7,8,9: Figures S3, S4 and S5, Additional file 5: Table S4) may be recognized by different combinations of IHF/HU proteins. A fourth set found in G. metallireducens (Additional file 15: Figure S6, Additional file 5: Table S4) is similar to multicopy sequences in many other genomes. Two transposons (ISGme8 and ISGme9) were found inserted near putative IHF/HU-binding sites of Class 1 (Additional file 5: Table S4). No such putative global regulatory sequence elements were identified in G. sulfurreducens. CYT387 in vivo However, pirin, a Fe(II)-binding protein that

associates with DNA in eukaryotic nuclei [118, 119], is present in G. sulfurreducens as GSU0825, but in G. metallireducens only as a frameshifted fragment, Gmet_3471. These genetic differences indicate that the proteins that decorate and bend the chromosome are very different Selleck VX-680 in the two species. Table 4 Integration host factor (IHF) and histone-like (HU) genes of G. metallireducens and G. sulfurreducens. Locus Tag G. metallireducens gene G. sulfurreducens gene

ihfA-1 Gmet_1417 GSU1521 ihfA-2 none GSU2120 ihfA-3 Gmet_3057 none ihfA-4 Gmet_3056* none ihfB-1 Gmet_1833 GSU1746 ihfB-2 Gmet_0868 GSU2602 hup-1 Gmet_0355 GSU3132 hup-2 Gmet_1608 none *Gmet_3056 is frameshifted near the N-terminus, but may be expressed from an internal start codon. The functions and associations of the various IHF alpha (ihfA), IHF beta (ihfB), and HU (hup) genes are yet unknown, as is their correspondence to any of the predicted regulatory sites illustrated in Figures S3, S4, S5, and S6. Although no quorum sensing through N-acylhomoserine lactones (autoinducers) Selleck Enzalutamide has ever been demonstrated for any Geobacteraceae, this kind of signalling may be possible for G. metallireducens because it possesses

a LuxR family transcriptional regulator with an autoinducer-binding domain (Gmet_1513), and two divergently transcribed genes with weak sequence similarity to autoinducer synthetases (Gmet_2037 and Gmet_2038). Both Gmet_2037 and Gmet_2038 have atypically low G+C content (Additional file 1: Table S1) and may have been recently acquired by G. metallireducens. The presence of a conserved nucleotide sequence on the 5′ side of Gmet_2037 and in 15 other locations on the chromosome (Additional file 16: Figure S7, Additional file 5: Table S4) suggests that Gmet_2037 may be an unusual autoinducer LDC000067 synthetase that is regulated by a riboswitch rather than an autoinducer-binding protein. This conserved sequence is also found on the 5′ side of many genes (frequently c-type cytochromes) in the genomes of G. sulfurreducens, G. uraniireducens, and P. propionicus, and overlaps with predicted cyclic diguanylate-responsive riboswitches [120]. The genomes of G. metallireducens and G. sulfurreducens differ in several other aspects of regulation. Nine pairs of potential toxins and antitoxins were identified in the G.

J Mol Evol 1980, 16:111–120 PubMedCrossRef 25 Felsenstein J: PHY

J Mol Evol 1980, 16:111–120.PubMedCrossRef 25. Felsenstein J: PHYLIP (Phylogeny Inference Package) documentation files, version 3.66. Seattle: Department of Genome Sciences,

University of Washington; 2006. 26. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25:3389–3402.PubMedCrossRef 27. Saitou N, Nei M: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987, 4:406–425.PubMed 28. Wright A-DG, Ma X, Obispo NE: Methanobrevibacter phylotypes are the dominant methanogens in sheep from Venezuela. Microb Ecol 2008, 56:390–394.PubMedCrossRef 29. Hook SE, Northwood KS, Abemaciclib solubility dmso Wright A-DG, McBride BW: Long-term monensin supplementation does not significantly affect the quantity or diversity of methanogens in the rumen of the lactating dairy cow. Appl TSA HDAC mouse Environ Microbiol 2009, 75:374–380.PubMedCrossRef 30. Wright A-DG, Toovey AF, Pimm CL: Molecular identification of methanogenic archaea from sheep in Queensland, Australia reveal more uncultured novel archaea. Anaerobe 2006, 12:134–139.PubMedCrossRef 31. Wright A-DG, Auckland CH, Lynn DH: Molecular diversity of methanogens in feedlot cattle from Ontario and Prince Edward Island, Canada. GNS-1480 mw Appl Environ Microbiol 2007, 73:4206–4210.PubMedCrossRef 32. Singleton

DR, Furlong MA, Rathbun SL, Whitman WB: Quantitative comparisons of 16S rDNA sequence libraries from environmental samples. Appl Environ Microbiol 2001, 67:4373–4376.CrossRef 33. Hook SE, Wright A-DG, McBride BW: Methanogens: methane producers of the rumen and mitigation strategies. Archaea 2010, 2010:1–11.CrossRef 34. Chaudhary PP, Sirohi SK: Dominance of Methanomicrobium phylotype in methanogen population present in Murrah buffaloes ( Bubalus bubalis ). Lett Appl Microbiol 2009, 49:274–277.PubMedCrossRef 35. An D, Dong X, Dong Z: Prokaryote diversity in the rumen of yak ( Bos grunniens ) and Jinnan cattle ( Bos taurus ) estimated by 16S rDNA

homology analyses. Anaerobe 2005, 11:207–215.PubMedCrossRef 36. Whitford MF, Teather RM, Forster RJ: Phylogenetic analysis of methanogens from the bovine rumen. BMC Microbiol 2001, 1:1–5.CrossRef 37. Zhou M, Hernandez-Sanabria E, Guan LL: Characterization of variation in rumen methanogenic communities under different dietary and host feed GBA3 efficiency conditions, as determined by PCR-denaturing gradient gel electrophoresis analysis. Appl Environ Microbiol 2010, 76:3776–3786.PubMedCrossRef 38. Janssen PH, Kirs M: Structure of the archaeal community of the rumen. Appl Environ Microbiol 2008, 74:3619–3625.PubMedCrossRef Authors’ contributions BS performed DNA extractions, PCR amplification of methanogen 16S rRNA genes, clone library construction, data analysis, and drafted the manuscript. ADW conceived the study, sampled forestomach contents from animals, performed data analysis and drafted the manuscript.

J Bacteriol 2003,185(13):3853–3862 PubMedCrossRef 52 Marchler-Ba

J Bacteriol 2003,185(13):3853–3862.PubMedCrossRef 52. Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, et al.: CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res 2011,39(Database issue):D225-D229.PubMedCrossRef 53. Galibert F, Finan TM, Long SR, Pühler A, Abola P, Ampe F, Barloy-Hubler F, Barnett MJ, Becker A, Boistard P, et al.: The composite genome of the legume symbiont Sinorhizobium meliloti. Science 2001,293(5530):668–672.PubMedCrossRef

54. Becker A, Barnett MJ, Capela D, Dondrup M, Kamp PB, Krol E, Linke B, Ruberg S, Runte K, Schroeder BK, et al.: A portal for rhizobial genomes: RhizoGATE integrates a Sinorhizobium meliloti genome annotation update with postgenome data. J Biotechnol 2009,140(1–2):45–50.PubMedCrossRef 55. Barloy-Hubler F, Cheron A, Hellegouarch VX-689 price A, Galibert F: Smc01944, a secreted peroxidase induced by oxidative stresses in Sinorhizobium meliloti 1021. Microbiology 2004,150(Pt 3):657–664.PubMedCrossRef Selleckchem AZD0530 56. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of Ganetespib datasheet protein database search programs. Nucleic Acids Res 1997,25(17):3389–3402.PubMedCrossRef 57. Watt SA, Tellstrom

V, Patschkowski T, Niehaus K: Identification of the bacterial superoxide dismutase (SodM) as plant-inducible elicitor Bortezomib chemical structure of an oxidative burst reaction in tobacco cell suspension cultures. J Biotechnol 2006,126(1):78–86.PubMedCrossRef 58. Davies BW, Walker GC: Disruption of sitA Compromises Sinorhizobium meliloti for

Manganese Uptake Required for Protection Against Oxidative Stress. J Bacteriol 2006,189(5):2101–2109.PubMedCrossRef 59. Kobayashi H, De Nisco NJ, Chien P, Simmons LA, Walker GC: Sinorhizobium meliloti CpdR1 is critical for co-ordinating cell cycle progression and the symbiotic chronic infection. Mol Microbiol 2009,73(4):586–600.PubMedCrossRef 60. Pobigaylo N, Wetter D, Szymczak S, Schiller U, Kurtz S, Meyer F, Nattkemper TW, Becker A: Construction of a large signature-tagged mini-Tn5 transposon library and its application to mutagenesis of Sinorhizobium meliloti. Appl Environ Microbiol 2006,72(6):4329–4337.PubMedCrossRef 61. Colombatti A, Bonaldo P, Doliana R: Type A modules: interacting domains found in several non-fibrillar collagens and in other extracellular matrix proteins. Matrix 1993,13(4):297–306.PubMedCrossRef 62. Barnett MJ, Toman CJ, Fisher RF, Long SR: A dual-genome Symbiosis Chip for coordinate study of signal exchange and development in a prokaryote-host interaction. Proc Natl Acad Sci U S A 2004,101(47):16636–16641. Epub 12004 Nov 16612PubMedCrossRef 63. Krol E, Becker A: Global transcriptional analysis of the phosphate starvation response in Sinorhizobium meliloti strains 1021 and 2011. Mol Genet Genomics 2004,272(1):1–17.

All characters were unordered and of equal weight

and gap

All characters were unordered and of equal weight

and gaps were treated as missing data. Maxtrees were unlimited, branches of zero length were collapsed and all multiple, equally parsimonious trees were saved. Clade Savolitinib solubility dmso stability was assessed using a bootstrap (BT) analysis with 1000 replicates, each with 10 replicates of random stepwise addition of taxa (Hillis and Bull 1993). The phylogram with bootstrap values above the branches is presented in Fig. 1 by using graphical options available in TreeDyn v. 198.3 (Chevenet et al. 2006). Fig. 1 The first of 1 000 equally most parsimonious trees obtained from a heuristic search with 1000 random taxon additions of the combined dataset of Cediranib in vitro SSU, LSU EF1-α and β-tubulin sequences alignment using PAUP v. 4.0b10. The scale bar shows 10 changes. Bootstrap support values for maximum parsimony (MP) and maximum likelihood (ML) greater than 50 % above the nodes. The values below the nodes are Bayesian posterior probabilities above 0.95. Hyphen (“–”) indicates a value lower than 50 % (BS) or 0.90 (PP). The original isolate numbers are noted after the

species names. The tree is rooted to Dothidea insculpta and Dothidea sambuci Fig. 2 Auerswaldia examinans (K 76513, holotype). a–c Appearance of ascostromata on the host substrate. d Vertical section through ascostroma. e–g Asci. Scale bars: b–c = 600 μm, d Isotretinoin = 200 μm e–g = 20 μm A maximum likelihood analysis was performed at the CIPRES webportal (Miller et al. 2010) using RAxML v. 7.2.8 as part of the “RAxML-HPC2 on TG” tool (Stamatakis 2006; Stamatakis et al. 2008). A general time reversible model (GTR) was applied with a AZD0156 cell line discrete gamma distribution and four rate classes. Fifty thorough maximum likelihood (ML) tree searches were done in RAxML v. 7.2.7 under the same model, with each one starting from a separate randomised tree and the best scoring tree selected with a final ln value of −13974.356237. One thousand non parametric bootstrap iterations were run with the GTR model and a discrete

gamma distribution. The resulting replicates were plotted on to the best scoring tree obtained previously. The model of evolution was estimated by using MrModeltest 2.2 (Nylander 2004). Posterior probabilities (PP) (Rannala and Yang 1996; Zhaxybayeva and Gogarten 2002) were determined by Markov Chain Monte Carlo sampling (BMCMC) in MrBayes v. 3.0b4 (Huelsenbeck and Ronquist 2001). Six simultaneous Markov chains were run for 1000000 generations and trees were sampled every 100th generation (resulting in 10000 total trees). The first 2000 trees, representing the burn-in phase of the analyses, were discarded and the remaining 8000 trees used for calculating posterior probabilities (PP) in the majority rule consensus tree (Cai et al. 2006). Phylogenetic trees were drawn using Treeview (Page 1996).

Nanosphere lithography (NSL) has emerged as an alternative nanofa

Nanosphere lithography (NSL) has emerged as an alternative nanofabrication technique, where a monodisperse or multidisperse nanosphere template acts as an etching or deposition mask to transfer its pattern to the underlying substrate [10–12]. The sizes of nanospheres can be tuned from 20 to 1,000 nm [13,

14], offering a simple and inexpensive solution to scale nanostructure feature sizes. More importantly, the location, density, GW-572016 mouse and coverage of nanostructures can be well controlled. With improvements in the domain sizes of the self-assembled nanosphere arrays [15], NSL has great potential in fabricating nanoscale electronics, optoelectronics, thermoelectrics, and biosensors. Over the past decade, NSL has been used to nanopattern Si [16], GaAs [17], and glass [18] substrates. Recently, we also demonstrated the realization of SiGe nanorod arrays on SiGe virtual substrates using NSL combined with catalytic etching [19]. On the other hand, the idea of integrating optoelectronic and electronic devices into Si chips has always been highly attractive due to the

benefits in cost, reliability, and functionality [20]. However, Si click here is an indirect bandgap semiconductor and thus of limited use for optoelectronic applications. Many efforts have been made Cobimetinib to resolve the low quantum efficiency of Si associated with its indirect bandgap. One important approach is the

combination of Si with other semiconductor materials, such as Ge or Si1 − x Ge x alloys for heterostructures. For this purpose, Si/Ge superlattices (SLs) [21], Luminespib mw multiple quantum wells (MQWs) [22], and multiple quantum dots (MQDs) [23] have been demonstrated to adjust the bandgap and reduce nonradiative recombination. Choi et al. further reported that the formation of microdisks from the Si/Ge/Si single QW using electron beam lithography significantly enhanced the intrinsic photoluminescence (PL) transitions [9]. Chen also fabricated pyramidal nanodots that possess Si/Ge SLs by chemical selective etching through a self-assembled Ge QD nanomask and found an obvious enhancement in PL emission [24]. In addition, an improvement of light extraction from SiGe/Si MQWs with nanowall structures fabricated by electron cyclotron resonance plasma etching through a random Al-masked pattern was also reported [25]. However, few studies reported the fabrication of periodic nanostructure arrays composed of SiGe/Si MQWs using NSL. In this study, we demonstrate the fabrication of optically active uniform SiGe/Si MQW nanorod and nanodot arrays from the Si0.4Ge0.6/Si MQWs using NSL combined with the reactive ion etching (RIE) process.

That being said,

they still estimated the market for the

That being said,

they still estimated the market for the three most AZD1480 concentration prominent genome profiling companies (23andme, deCODE and Navigenics) to be around US $10–20 million in 2009. This implies that these companies certainly know how to attract certain consumers; however, in order to be a sustainable business, they need be able to do more than simply attract a bunch of enthusiastic early adopters of new technologies. The announcement in November 2009 by the biotech company deCODE Genetics, (which markets the DTC genetic service called deCODEme) that it had filed a MK5108 price voluntary petition for relief under Chapter 11 of the USA Bankruptcy Code raised the question whether other companies offering DTC genomics services would also follow suit (Hayden 2009). An analysis of DTC genetic testing companies’ activities in this field shows that various BKM120 genetic tests that were marketed are no longer available for purchase from certain companies. For example, the following tests (from certain companies) are no longer available for purchase: tests that predicted AIDS progression based on an analysis of CCR5-Delta 32 and CCR2-64I genes (www.​hivgene.​com, www.​hivmirror.​com); nutrigenomic tests (www.​mycellf.​com, www.​genecare.​co.​za, www.​integrativegenom​ics.​com); risk assessment tests of various common disorders such as cardiovascular disease, osteoporosis, immune system defects, Alzheimer Disease

(www.​genovations.​com, www.​smartgenetics.​com, www.​qtrait.​com); tests for addiction (www.​docblum.​com);

pharmacogenomic tests (www.​signaturegenetic​s.​com); carrier testing for disorders such as cystic fibrosis (www.​udlgenetics.​com). Meanwhile, additional companies retracted their product from the market temporarily for unknown reasons (www.​genotrim.​com, www.​psynomics.​com), and it is unclear whether they will be available again. Other initiatives, such as the free “comprehensive genetic test” (www.​geneview.​com), also disappeared. Since these companies have, for the most part, left the clonidine market in silence, it is difficult to understand exactly their reasons for doing so. One may suggest that the consequences of the global financial crisis (initiated in 2007–2008) may have contributed to the downfall of some of these companies (i.e., failure to find enough paying customers). That being said, it seems that various companies also struggled with intellectual property protection (Bandelt et al. 2008; Knowledge 2009) and the legal requirement that a physician should be involved in the ordering of genetic tests (Wadman 2008) (which is the case in some states in the USA such as Connecticut and Michigan; The Genetics and Public Policy Center 2010). Furthermore, companies testing only a few mutations (with each mutation corresponding to one trait) may have had difficulties competing with companies like 23andme, which offer full genome scans (Hayden 2008).

PubMedCrossRef 3 Mazon G, Erill I, Campoy S, Cortes P, Forano E,

PubMedCrossRef 3. Mazon G, Erill I, Campoy S, Cortes P, Forano E, Barbe J: Reconstruction of the evolutionary history of the LexA-binding sequence. Microbiology RAD001 2004, 150:3783–3795.PubMedCrossRef 4. Wade JT, Reppas NB, Church GM, Struhl K: Genomic analysis of LexA binding reveals the permissive nature of the Escherichia coli genome and identifies unconventional target sites. Genes Dev 2005, 19:2619–2630.PubMedCentralPubMedCrossRef

5. Au N, Kuester-Schoeck E, Mandava V, Bothwell LE, Canny SP, Chachu K, Colavito SA, Fuller SN, Groban ES, Hensley LA, O’Brien TC, Shah A, Tierney JT, Tomm LL, O’Gara TM, Goranov AI, Grossman AD, Lovett CM: Genetic composition of the Bacillus subtilis SOS system. J Bacteriol 2005, 187:7655–7666.PubMedCentralPubMedCrossRef 6. Butala M, Sonjak S, Kamensek S, Hodoscek

M, Browning DF, Zgur-Bertok D, Busby SJ: Double locking of an Escherichia buy Quisinostat coli promoter by two A-1155463 research buy repressors prevents premature colicin expression and cell lysis. Mol Microbiol 2012, 86:129–139.PubMedCrossRef 7. Quinones M, Kimsey HH, Waldor MK: LexA cleavage is required for CTX prophage induction. Mol Cell 2005, 17:291–300.PubMedCrossRef 8. Da Re S, Garnier F, Guerin E, Campoy S, Denis F, Ploy MC: The SOS response promotes qnrB quinolone-resistance determinant expression. EMBO Rep 2009, 10:929–933.PubMedCentralPubMedCrossRef 9. Guerin E, Cambray G, Sanchez-Alberola N, Campoy S, Erill I, Da Re S, Gonzalez-Zorn B, Barbe J, Ploy MC, Mazel D: The SOS response controls integron recombination. Science 2009, 324:1034.PubMedCrossRef 10. Ubeda C, Maiques E, Knecht E, Lasa I, Novick RP, Penades JR: Antibiotic-induced SOS response promotes horizontal dissemination of pathogenicity island-encoded virulence factors in staphylococci. Mol Microbiol 2005, 56:836–844.PubMedCrossRef 11. Beaber JW, Hochhut B, Waldor MK: SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature

2004, 427:72–74.PubMedCrossRef 12. Goranov AI, Kuester-Schoeck E, Wang JD, Grossman AD: Characterization of the global transcriptional responses to different types of DNA damage and disruption of replication in Bacillus subtilis . J Bacteriol 2006, 188:5595–5605.PubMedCentralPubMedCrossRef 13. Rupnik M, Wilcox Vasopressin Receptor MH, Gerding DN: Clostridium difficile infection: new developments in epidemiology and pathogenesis. Nat Rev Microbiol 2009, 7:526–536.PubMedCrossRef 14. Gebhart D, Williams SR, Bishop-Lilly KA, Govoni GR, Willner KM, Butani A, Sozhamannan S, Martin D, Fortier LC, Scholl D: Novel high-molecular-weight, R-type bacteriocins of Clostridium difficile . J Bacteriol 2012, 194:6240–6247.PubMedCentralPubMedCrossRef 15. Johnston JL, Sloan J, Fyfe JA, Davies JK, Rood JI: The recA gene from Clostridium perfringens is induced by methyl methanesulphonate and contains an upstream Cheo box. Microbiology 1997,143(Pt 3):885–890.PubMedCrossRef 16.

It has been reported that the insulting properties of the barrier

It has been reported that the insulting properties of the barrier layer significantly affect the uniformity and quality of the depositing material [23]. Therefore, handling of the barrier layer during deposition of secondary material in the nanopores of AAO is very essential and important. Until now, three different kinds of electrochemical deposition BAY 63-2521 cell line methods are applied for filling the pores of AAO template: direct current

(DC) electrodeposition [24], pulse electrodeposition (PED) [25], and alternating current (AC) electrodeposition [26]. Filling of AAO pores with metallic or magnetic nanowires via direct current (DC) electrodeposition is a tedious Selleckchem R406 process and requires many steps. For instance, first AAO template has to be isolated from Al substrate, and this is achieved by dissolving the Al substrate in a toxic saturated solution of HgCl2. Subsequently, the barrier layer has to be etched away using chemical etching which often leads to the non-uniform widening of pores at the bottom. This process produces AAO template with different

pore diameters at the top and the bottom surface; resulting in non-uniform-diameter nanowires which is undesirable in device fabrication. Finally, a thin metallic contact is sputtered on one side of AAO which act as a cathode during electrodeposition. These steps are time consuming, and additionally, the handling of a fragile AAO template during the whole process is a very difficult task. Furthermore, electrodeposition via direct current in the pores of AAO without modification of barrier layer is generally LY294002 mw unstable

and leads to a non-uniform filling of the AAO nanopores ever due to the cathodic side reaction [25]. PED method is also widely used for the fabrication of metallic or magnetic nanowires in the nanopores of AAO templates. Ni [16, 25] and Co [27, 28] nanowires have been fabricated in the nanopores of AAO applying this method. Although the uniformity and pore-filling efficiency increased many folds compared to DC electrodeposition; however this method also needs modification of the barrier layer [16, 25–28]. In contrast, AC electrodeposition is a very powerful technique and it does not need the detachment of AAO template from the Al-substrate or modification of the barrier layer. Moreover, the Al-substrate is used as cathode during electrodeposition. To the best of the author knowledge, Co-Ni binary alloy nanowire electrodeposition in the AAO template without modification of the barrier layer has not been reported to date. In this study, the fabrication of dense Co-Ni binary alloy nanowires within the nanopores of AAO templates via AC electrodeposition has been reported. Co-Ni binary alloy nanowires with different composition were co-deposited into the nanopores of AAO templates from a single sulfate bath of Co and Ni without modifying the barrier layer at room temperature.

Methods V2O5 NWs were grown by PVD using high-purity V2O5 powder

Methods V2O5 NWs were grown by PVD using high-purity V2O5 powder as the source material and mixed O2/Ar as the carrier gas. The growth temperature was 550°C, and the pressure was 0.3 Torr. The details of material growth can be found in our earlier publications [25, 26]. The morphology, structure, and crystalline quality of the as-grown V2O5 NWs were characterized by field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), Raman spectroscopy, high-resolution transmission electron microscopy (HRTEM), and selected-area

electron diffraction (SAD). Electrical contacts of the two-terminal single-NW devices were fabricated by focused ion beam (FIB; FEI MCC950 supplier Quanta 3D FEG, FEI Company, Hillsboro, OR, USA) deposition using platinum (Pt) as the metal electrode. Individual NWs were EPZ5676 supplier dispersed on the insulating Si3N4/n-Si or SiO2/n-Si template with pre-patterned Ti/Au microelectrodes prior to FIB deposition. Electrical measurements were carried out on

an ultralow-current leakage cryogenic probe station (TTP4, LakeShore Cryotronics, Inc., Westerville, OH, USA). A semiconductor characterization system (4200-SCS, Keithley Instruments Inc., Cleveland, OH, USA) was utilized to source dc bias and measure current. He-Cd gas laser and diode laser were used to source excitation lights with wavelengths (λ) at 325 and 808 nm for the PC measurements, respectively. The incident power of laser crotamiton was measured by a calibrated power meter (Ophir

Nova II, Ophir mTOR inhibitor Optronics, Jerusalem, Israel) with a silicon photodiode head (Ophir PD300-UV). A UV holographic diffuser was used to broaden laser beam size (approximately 20 mm2) to minimize error in power density calculation. Results and discussion A typical FESEM image of V2O5 NW ensembles grown as described above on silicon substrate prepared by PVD is shown in Figure  1a. The micrograph reveals partial V2O5 1D nanostructures with slab-like morphology. The diameter (d), which is defined as the width of the NWs with relatively symmetric cross section, is in the range of 100 to 800 nm. The length usually is longer than 10 μm. The XRD pattern shows the predominant diffraction peaks at 20.3° and 41.2° (Figure  1b), which is consistent with the (001) and (002) orientations of the orthorhombic structure (JCPDS no. 41–1426). The Raman spectrum shows the eight signals at positions of 145 cm-1 (B1g/B3g), 197 cm-1 (Ag/B2g), 284 cm-1 (B1g/B3g), 304 cm-1 (Ag), 405 cm-1 (Ag), 481 cm-1 (Ag), 703 cm-1 (B1g/B3g), and 994 cm-1 (Ag), which correspond to the phonon modes in previous reports [17, 27, 28], further confirming the orthorhombic crystalline structure of the V2O5 NWs (Figure  1c). Two major Raman peaks at low-frequency positions of 145 and 197 cm-1 that originated from the banding mode of (V2O2) n also indicate the long-range order layered structure of V2O5 NWs.